Developmental distribution of reelin-positive cells and their secreted product in the rodent spinal cord.

نویسندگان

  • Marc D Kubasak
  • Rona Brooks
  • Songbo Chen
  • Saul A Villeda
  • Patricia E Phelps
چکیده

To date, only sympathetic and parasympathetic preganglionic neurons are known to migrate abnormally in reeler mutant spinal cord. Reelin, the large extracellular matrix protein absent in reeler, is found in wild-type neurons bordering both groups of preganglionic neurons. To understand better Reelin's function in the spinal cord, we studied its developmental expression in both mice and rats. A remarkable conservation was found in the spatiotemporal pattern of Reelin in both species. Numerous Reelin-expressing cells were found in the intermediate zone, except for regions containing somatic and autonomic motor neurons. A band of Reelin-positive cells filled the superficial dorsal horn, whereas only a few immunoreactive cells populated the deep dorsal horn and dorsal commissure. High levels of diffuse Reelin product were detected in the lateral marginal and ventral ventricular zones in both rodent species. This expression pattern was detected at all segmental spinal cord levels during embryonic development and remained detectable at lower levels throughout the first postnatal month. To discriminate between the cellular and secreted forms of Reelin, brefeldin A was used to block secretion in organotypic cultures. Such perturbations revealed that the high levels of secreted Reelin in the lateral marginal zone were derived from varicose axons of more medially located Reelin-positive cells. Thus, the laterally located secreted Reelin product may normally prevent the preganglionic neurons from migrating too far medially. Based on the strong evolutionary conservation of Reelin expression and its postnatal detection, Reelin may have other important functions in addition to its role in neuronal migration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Membrane fusion/repair in nerve cells: a biophysical application in spinal cord injuries regeneration

Cell membrane has a critical and vital role in functioning and existence of nerve cells that form central nervous system (CNS) in mammals. Disruption of nerve membrane that normally occurs following an accident injuring spinal cord is known to be the major cause of paralysis. In most occasions, spinal cord injuries are not leading to complete cut in spinal cord fibers but are known to cause cru...

متن کامل

Membrane fusion/repair in nerve cells: a biophysical application in spinal cord injuries regeneration

Cell membrane has a critical and vital role in functioning and existence of nerve cells that form central nervous system (CNS) in mammals. Disruption of nerve membrane that normally occurs following an accident injuring spinal cord is known to be the major cause of paralysis. In most occasions, spinal cord injuries are not leading to complete cut in spinal cord fibers but are known to cause cru...

متن کامل

Cerebellum and reelin under chronic treadmill exercise conditions in male rats

Reelin is an extracellular matrix neuroprotein which plays important roles during development and maturation of cerebellum. In the postnatal cerebellum, Reelin is synthesized by cerebellar granule cells and secreted to extracellular matrix. This secreted protein modulates adult synaptic function, neurotransmitter release and regulates plasticity. Exercise has beneficial effects on central nervo...

متن کامل

Evidence for a cell-specific action of Reelin in the spinal cord.

Reelin, the extracellular matrix protein missing in reeler mice, plays an important role in neuronal migration in the central nervous system. We examined the migratory pathways of phenotypically identified spinal cord neurons to determine whether their positions were altered in reeler mutants. Interneurons and projection neurons containing choline acetyltransferase and/or NADPH diaphorase were ...

متن کامل

Glycoconjugates Distribution during Developing Mouse Spinal Cord Motor Organizers

Background: The aim of this research was to study the distribution and changes of glycoconjugates particularly their terminal sugars by using lectin histochemistry during mouse spinal cord development. Methods: Formalin-fixed sections of mouse embryo (10-16 fetal days) were processed for lectin histochemical method. In this study, two groups of horseradish peroxidase-labeled specific lectins we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of comparative neurology

دوره 468 2  شماره 

صفحات  -

تاریخ انتشار 2004